Modeling with fractional difference equations
نویسندگان
چکیده
منابع مشابه
On Some Fractional Systems of Difference Equations
This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.
متن کاملOscillation of Fractional Nonlinear Difference Equations
The oscillation criteria for forced nonlinear fractional difference equation of the form ∆x(t) + f1(t, x(t+ α)) =v(t) + f2(t, x(t+ α)), t ∈ N0, 0 < α ≤ 1, ∆x(t)|t=0 =x0, where ∆α denotes the Riemann-Liouville like discrete fractional difference operator of order α is presented. Mathematics Subject Classification: 26A33, 39A12
متن کاملFinite difference Methods for fractional differential equations
In this review paper, the finite difference methods (FDMs) for the fractional differential equations are displayed. The considered equations mainly include the fractional kinetic equations of diffusion or dispersion with time, space and time-space derivatives. In some way, these numerical methods have similar form as the case for classical equations, some of which can be seen as the generalizat...
متن کاملTwo-dimensional Fractional System of Nonlinear Difference Equations in the Modeling Competitive Populations
In this paper we have already investigated the solutions of the two-dimensional fractional system of nonlinear difference equations in the modeling competitive populations in the form 1 1 1 1 1 1 & n n n n n n n n x y x y x y y x (1) where and are real numbers with the initial conditions 1 0 1 , , , x x y and 0 y such that 1 0 x y and 1 0 y x . Moreov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2010
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2010.02.009